jueves, 22 de abril de 2010

FUNCIONES




Función inyectiva

Ejemplo de función inyectiva.
En matemáticas, una función es inyectiva si a cada valor del conjunto (dominio) le corresponde un valor distinto en el conjunto (imagen) de . Es decir, a cada elemento del conjunto A le corresponde un solo valor tal que, en el conjunto A no puede haber dos o más elementos que tengan la misma imagen.
Así, por ejemplo, la función de números reales , dada por no es inyectiva, puesto que el valor 4 puede obtenerse como f(2) y f( − 2). Pero si el dominio se restringe a los números positivos, obteniendo así una nueva función entonces sí se obtiene una función inyectiva.




Cardinalidad e inyectividad
Dados dos conjuntos y , entre los cuales existe una función inyectiva tienen cardinales que cumplen:
Si además existe otra aplicación inyectiva , entonces puede probarse que existe una aplicación biyectiva entre A y B









Función biyectiva

Ejemplo de función biyectiva.
En matemática, una función es biyectiva si es al mismo tiempo inyectiva y sobreyectiva.
Formalmente,

para ser más claro se dice que una función es biyectiva cuando todos los elementos del conjunto de partida en este caso (x) tienen una imagen distinta en el conjunto de llegada, que es la regla de la función inyectiva. sumándole que cada elemento del conjunto de salida le corresponde un elemento del conjunto de llegada, en este caso (y) que es la norma que exige la función sobreyectiva


Teorema

Si es una función biyectiva, entonces su función inversa existe y también es biyectiva.
Ejemplo
La función es biyectiva.
Luego, su inversa también lo es.



Función sobreyectiva

Ejemplo de función sobreyectiva.
En matemática, una función es sobreyectiva (epiyectiva, suprayectiva, suryectiva o exhaustiva), si está aplicada sobre todo el codominio, es decir, cuando la imagen , o en palabras más sencillas, cuando cada elemento de "Y" es la imagen de como mínimo un elemento de "X".

24 comentarios:

  1. EXCELENTE EXPLICAS MUY BIEN SE LE ENTIENDE

    ResponderEliminar
  2. Hola las funciones que no caen dentro de ninguno de estos rangos como se clasifican?

    ResponderEliminar
  3. Muy buena explicación, se entiende fácilmente.

    ResponderEliminar
  4. lo que me ha dicho mi profesor de la facultad me sonaba a chino, pero a ti se te entiende fenomenal. muchas gracias

    ResponderEliminar
  5. super facil entender el tema en otras paginas me estaban hablando en arabe frances italiano portugues marciano y de todos los idiomas posibles pero aqui me resulto muy facil

    ResponderEliminar
  6. Uyy parcero explicas muy bien . Todo bien

    ResponderEliminar
  7. Uyy parcero explicas muy bien . Todo bien

    ResponderEliminar
  8. de donde saco las flechas? me lo mandaron asi A{1,2,3,4} B{7,8,9,10}

    ResponderEliminar
  9. de donde saco las flechas? me lo mandaron asi A{1,2,3,4} B{7,8,9,10}

    ResponderEliminar
    Respuestas
    1. Este comentario ha sido eliminado por el autor.

      Eliminar
    2. Este comentario ha sido eliminado por el autor.

      Eliminar
    3. podria ser la funcion: f(a)=6+b, asi que: f(1)=7, f(2)=8....las flechas salen del conjunto A hacia el cojunto B; y seria una funcion Biyectiva

      Eliminar
    4. podria ser la funcion: f(a)=6+b, asi que: f(1)=7, f(2)=8....las flechas salen del conjunto A hacia el cojunto B; y seria una funcion Biyectiva

      Eliminar
  10. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  11. Este comentario ha sido eliminado por el autor.

    ResponderEliminar